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DESIGN CHARTS FOR ARBITRARILY PIVOTED, LIQUID-LUBRICATED,
FLAT-SECTOR-PAD THRUST BEARING
by lzhak Etsion*

Lewis Research Center

SUMMARY

A flat, sector-shaped geometry for a liquid-lubricated thrust bearing is analyzed
considering both the pitch and roll of the pad. Performance characteristics such as
center-of-pressure location, unit load, friction loss coefficient, and lubricant flow are
presented in design charts, These charts enable a direct approach to the design of
both point- and line-pivoted pads and also provide the necessary procedures for the
design of nontilting flat pads. The various features of point- and line-pivoted configu-
rations are discussed, and a comparison is made with the Michell bearing approxima-
tion. It is found that this approximation always overestimates load capacity.

INTRODUC TION

Although during the last three decades the commonly used flat sector pad has been
extensively analyzed, most of the investigators treated a simplified oil film shape
(refs. 1to9). Either a linear film thickness variation was assumed in the circumfer-
ential direction, independent of the radius, or some sort of an exponential oil film
shape was used. In some works (e.g., refs, 1 and 7) the sector shape is transformed
into a rectangular configuration, which further distorts the actual geometry.

An actual tilting pad assumes both pitch and roll about some point and, for the flat
surface, the clearance varies in both the radial and circumferential directions, with
the circumferential variation being sinusoidal rather than linear, Therefore, all of the
previously mentioned solutions are approximations and may lead to an overly optimistic
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design of a flat, sector-shaped tilting pad.

When dealing with pivoted-pad bearings it must be remembered that, in order to
satisfy ‘equilibrium of moments, the resultant of the hydrodynamic pressures must
pass through the pivot, Thus, for a given pivot location, the solution of the Reynolds
equation should result in a predetermined location for the center of pressure. Unfor-
tunately, such a direct solution is impossible and the designer must presently use a
tedious iteration approach (refs. 10 and 11) or select a certain pad orientation and
place a point pivot at the resulting center of pressure (ref. 12). In both cases the solu-
tions are limited to specific design points. That is, for given values of load, speed,
and minimum film thickness there corresponds only one pivot location. In real applica-
tions the pivot is fixed within the pad area. Hence, when changing the operating condi-
tions the pad must change its pitch and roll angles so that the center of pressure will
always stay at the pivot location. A complete analysis of the tilting pad thrust bearing
must therefore cover all the possible pitch and roll angles for possible pivot locations
within the pad area. The objective of this work is to obtain such a solution to provide
the necessary data for the design of flat, sector-shaped tilting pad thrust bearings.
This will be presented for the incompressible case in the form of design charts that
give the load capacity, friction loss, and lubricant flow for various pivot locations and
pad tilt angles, The solutions are also valid for the tilting pad gas bearing at low com-
pressibility numbers,

SYMBOLS
A pad area, B<r2 - r2> / 2
o i
F friction loss
7 nondimensional friction loss, F/ K(.or(z)h2
H nondimensional film thickness, h/hp

h film thickness

a e e e

K bearing parameter, 6uw(r 0/ h2)2

P dimensionless pressure, p/K
P pressure
Q volumetric oil flow
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nondimensional flow, Q / (1/2) whzri
nondimensional radial coordinate, r/ r,
r radial coordinate
w pad load capacity
w nondimensional load, W/ Krg
B angular extent of pad
€ tilt parameter, yr_/ by
v tilt about pitch line
angular coordinate, measured from leading edge
1 viscosity
T shear stress

w shaft speed

Subscripts:

cp center of pressure

i inner radius

l leading edge

o outer radius

p pitch line

t trailing edge

1 maximum film thickness

2 minimum film thickness

THEORETICAL BACKGROUND

The incompressible Reynolds equation in polar coordinates is

8 (xh® ap),1 8 (h° p\_4,, oh "
or \ u Or r 96 \n 080 o0



In order to solve equation (1) for the pressure distribution, the oil film thickness h
has to be expressed in terms of the independent variables r and 6, I an earlier re-
port (ref. 13), it was shown that any pitch and roll of a sector-shaped pad about a cer-
tain point can be transformed to a corresponding pure pitch about a certain radial line.
This radial line may or may not be located between the leading and trailing edges of the
pad. This can be understood from figure 1 by visualizing a plane parallel to the runner
that goes through the origin of the sector (point O in fig, 1), The radial line (called
the pitch line) about which the pad motion is purely pitch is the intersection between
this parallel plane and the plane of the tilted sector, and it can be either inside or out-
side the sector boundaries. By considering the clearance hp along this radial pitch
line as a reference, the film thickness at any point (r, §) is given by

h=hp+yr sin(@p— 0) (2)
where vy is the amount of tilt about the pitch line. If we let p=KP, h= th, and

r=Rr, where K = 6uw(ro/h2)2, equations (1) and (2) can be transformed to the di-

mensionless form

Kl (RH3 ﬂ’) 10 (Hs Q) - n2g 8 @)
oR oR R 06 o0 00
and
H=1+cRsin(g, - 0) (4)

where H, in equation (3) is the dimensionless minimum film thickness hz/h and the
tilt parameter ¢ is y(ro/ hp). The boundary conditions for equation (3) are P=20
along the pad boundaries.

Four parameters are needed to determine a unique solution of equation (3): the
radius ratio ri/ o the pad angular extent g, the radial pitch line location 6 _, and the
tilt parameter ¢. Equation (3) is expanded by finite differences and solved numerically
by using the Gauss-Seidel iteration method (ref. 14). After the pressure distribution is
known, the total load capacity is obtained from

W=V _ fl ‘{ﬁdeedR (5)

2 r./1r
Kro i 7o

The pad area is given by
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and the dimensionless unit load of the bearing is
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The dimensionless radial and angular coordinates of the center of pressure are given

by
1 1 B o
ch = / / PR™ d6 dR (7a)
W ri/ r, 0
and
1 1 B o .
sin Ocp = — f / PR” sin 60 d6 dR (7b)
WRCp ri/ r, 0

The shear stress on the runner is

T:(,_Lwr+£ op
h 2r 90

and the power loss is

r B
F= f O/ Tcurz dé dr
r; 0

Defining the dimensionless power loss
F=-_F

2
Kwr oh2

gives
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T = R "2 R H 3P\4p4gr (8)

6 H 2 H2 00
ri/ r, <0
The circumferential volumetric flow is obtained from
1

— 3

9=—9 _ H g (H)} L3Py 9)
H H R 06

1 2
= wr‘h 2
5 02 I‘i/r0

When evaluating the integral at 6 = 0, equation (9) gives the inflow QZ across the

leading edge. At 6= g the outflow Qt across the trailing edge is obtained.

RESULTS AND DISCUSSION

In total, 12 different geometries were analyzed. Inner to outer radius ratios were
0.3, 0.5, and 0,7 at pad angles of 300, 450, 600, and 90°, Each pad was run at vari-
ous tilt parameters and pitch line locations. A modified tilt parameter in the form
er/h2 was used as the basis for calculations since the minimum film thickness h2
rather than h_ is of importance to the designer. The pitch line location 0_ was re-
stricted to the range S - 7/2 < Gp < n/2. This assures a circumferentially converging
film thickness all over the pad area (ref. 13) and eliminates the possibility of cavita-
tion,

Figure 2 is a summary of results for the maximum available unit load that can be
obtained at various pitch line locations. It is clear that for the whole range of pad
geometries there is a sharp maximum at 6_/8 = 1. Hence, to obtain the maximum
load capacity from a given pad, the pad should be tilted in a way that maintains a uni-
form minimum film thickness along its trailing edge.

A physical explanation for this is that the pressure buildup in the lubricating film
is affected by the resistance to lubricant outflow. Some of this flow occurs along the
inner and outer circumferences of the pad, but the larger portion leaks across the
trailing edge. Hence, it would be advantageous to decrease the escape area along this
boundary. For a given minimum film thickness hz, the least escape area and hence
the highest pressure buildup can be achieved by maintaining uniform h2 along the
trailing edge.

As can be seen from figure 2, the load capacity drops sharply as Gp exceeds g.



Therefore, it was found reasonable to limit the range of Gp to 6 /=1, In that case
the minimum film thickness, for any 7/2 - 8 < Op < B, is at the point (ry B), and its
dimensionless value is given by

Hy =1+ ¢ sin(0, - f) (10)

The modified tilt parameter given by

Yo _ ¢
2 Hy
is therefore related to ¢ through
vr
h2 1+e¢ sm(@p - B

The design data for nine of the configurations are presented in figures 3 to 11 in groups
of five charts for each pad geometry. In each figure, part (a) gives the center-of-
pressure location for various constant values of 'yro/ h2 and 9p/ B. Parts (b), (c), (d),
and (e) give the unit load, power loss coefficient, inflow, and outflow, respectively, as
functions of yr o/hz for various constant values of Gp/ B.

Use of Design Charts

Pivoted-pad bearings. - The design charts can be used for both point-pivoted and
line-pivoted tilting pads. They can be used either to determine minimum film thick-

ness for a specified load, speed, and pivot location or to find the pivot location for a
given load, speed, and optimum minimum film thickness. The first approach is useful
when designing for a special purpose, like a centrally pivoted pad, or when the oper-
ating conditions, like speed or load, are changed after a pivot location has been se-
lected for a certain design point. The second approach is used when designing for
specified operating conditions or for optimization purposes. In this case, for a given
pad geometry, the designer selects the optimum value he wants from either part (b),
(¢), (d), or (e). By this selection a set of the parameters yro/h2 and Gp/B is ob-
tained, which, by part (a), determines the center of pressure that is identical to the
pivot location. On the other hand, if the pivot location is known, the procedure is sim-
ply reversed. From part (a) for each pivot location there corresponds a set of the pa-
rameters yr 0/ h2 and Gp/ B. For this set of parameters the dimensionless unit load



is found from part (b) in the form Whg /6uwr(2)A. Now for any given load and speed the
minimum film thickness h, is obtained and then the tilt y can be found from the
known tilt parameter vyr 0/h2. The friction loss F, inflow Ql’ and outflow Qt can be
found by using parts (c), (d), and (e).

With point-pivoted pads the design is straightforward. Once the pivot point is
fixed, the pad alines itself by pitching and rolling, about the pivot, to obtain the neces-
sary tilt y about the radial line at the proper angle Gp/ B. However, when line-
pivoted pads are designed, the line pivot must go through the center of pressure and be
parallel to the pitch line at the angle Gp measured from the leading edge. This as-
sures equal performance of the line- and point-pivoted pads. For the highest load
capacity and lowest friction loss the line pivot should be parallel to the trailing edge
(ep/ B =1). With nonradial line pivots this is not a problem at all, but with a radial
line pivot the design is limited to those cases where lines of constant 6_/g in part (a)
intersect lines of constant angular center-of-pressure coordinate, 0 cp/ B=06_/B. This
assures edquilibrium of moments about the radial line pivot. From the various parts (a)
of figures 3 to 11 it can be seen that this demand makes the radial line-pivoted pad in-
ferior to the point-pivoted one. A radial line pivot design eliminates one degree of
freedom (pad roll) and fixes the radial location of the center of pressure (parts (a)).
Thus the design for maximum unit load, where the desired 6_/p is 1 and ecp/ B is
always less than 1, is impossible with a radial line-pivoted pad.

Another special design is that of a centrally pivoted pad. Again from parts (a) it
is seen that a flat, sector pad tilted about its mid-angular line cannot produce any load
capacity. The fact that such a bearing does carry load in a real application is attrib-
uted to thermal and mechanical distortions, but the efficiency of such a design is still
questionable when compared with the centrally point-pivoted pad. With the point pivot,
it can be seen from parts (a) and (b) that an angular location of 6 c /B=0.5 is a viable
design for a flat sector pad, More than that, for this angular location the designer can
choose the optimum radial coordinate of the pivot that will maximize the unit load.
This, in turn, results in the largest minimum film thickness for a given speed and
load.

When a centrally pivoted, flat, sector pad is used, the penalty in unit load as com-
pared with a design for maximum unit load is quite high. As an example, for a pad
radius ratio ri/ r, of 0.5 and angular extent g8 of 45° the loss in unit load is almost
60 percent, That means a reduction of about 35 percent in minimum film thickness as
compared with an optimum design for the same load and speed.

Tapered-land bearings. - The information that is contained in figures 3 to 11 is
also useful for nonpivoting (fixed), flat, sector-shaped pads., For any desired oper-
ating condition, one can select a set of pitch line location Gp/ B and tilt parameter




yro/ h2' Hence, the necessary taper y can be obtained which, together with the loca-
tion Op/ B, completely defines the sector pad shape. Determining the minimum film
thickness h2 for a nonpivoting pad at off-design points involves some cross plotting.
In contrast to the tilting pad, the slope vy of the nontilting pad is fixed while the center
of pressure is free to change. Hence, since the parameter 6_/B is fixed too, for any
given load and speed there corresponds a different value of yro/ hz. A design curve
can be constructed from part (b) for any line of constant 6_/B by multiplying values of
Whg /6,uwr§A by their corresponding values of (yro/hz)z. This enables one to plot the
curve of W'yz/GuwA against the parameter yro/hz for the line of constant 6_/B. Now
since vy is known for the fixed pad, one can find from that curve the value of yro/h2
that corresponds to any given load and speed and therefore obtain the corresponding
value of h,.

Comparison with Michell Bearing Approximation

As was mentioned in the INTRODUCTION, a common practice in tilting pad design
is to approximate the oil film shape by a uniform taper in the circumferential direction.
This type of bearing, where h is independent of r and varies linearly with 6, is
known as the Michell bearing, In order to check the accuracy of the Michell bearing
approximation, the results of reference 6 were transformed to the same dimensionless
form and compared with the results of the present work. Table I presents the dimen-
sionless unit load W/KA for various maximum to minimum film thickness ratios.
Two extreme configurations were chosen for the comparison. The first sector has a
low radius ratio of 1/3 and large angle of 800, while the second sector has a radius
ratio of 2/3 and an angle of 30°. From table I it is clear that the Michell bearing ap-
proximation overestimates significantly the load of an actual flat configuration. The
overestimation ranges from 13 percent at hl/h2 =2, ri/r0 =2/3, B=230° and GP/B
=1 to 170 percent at hl/h2 =9, ri/r0 =1/3, 8=280° and GP/B =0.5.

CONCLUDING REMARKS

The pitch and roll of a sector pad about any point can be transformed to a pure
pitch about some radial line. This transformation enables bearing performance to be
presented as a function of only two dimensionless parameters, namely, the tilt param-
eter and the radial line location. This in turn provides a direct approach to the design
of flat, sector-shpaed, tilting pad bearings by eliminating the need of tedious iterations.

Numerical solutions for nine different sector pads having radius ratios of 0. 3, 0.5,
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and 0, 7 and sector angles of 300, 450, and 60° were obtained, Their performances are
presented in design charts that enable the design of both point- and line-pivoted tilting

pad bearings.

Point-pivoted pads are superior to radial-line-pivoted ones since they have an ad-
ditional degree of freedom. Special designs, like the one for maximum unit load or
that of a centrally pivoted pad, can be accomplished with a point-pivoted flat configura-

tion but not with a radial-line-pivoted one,
The Michell bearing approximation, commonly used for design purposes, is unsafe
since it always overestimates the load-carrying capacity of an actual flat sector pad.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, September 7, 1976,
505-04,
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TABLE I. - COMPARISON BETWEEN UNIT LOAD OF FLAT SECTOR-

SHAPED PADS AND THEIR CORRESPONDING MICHELL BEARING PADS

Radius ratio, ri/ Tos 2/3;

angular extent of pad, B, 30°

Clearance Radius ratio, ri/ Ty 1/3;
ratio, angular extent of pad, B, 80°
hl/hz
Pitch line Michell Pitch line
location, bearing location,
Gp/ B approximation Gp/ B
0.5 1 0.5 1
Unit load, (W/KA)x102
2 0,335 0.413 0. 525 0,255 0,298
3 . 312 . 440 . 548 . 242 . 312
5 .216 . 365 .456 172 . 255
9 . 113 . 237 .305 . 093 . 164

Michell
bearing
approximation

0.336
. 346
. 298
. 190
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Figure 1. - Geometry of sector pad.
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Figure 3. - Design charts for flat, sector-shaped pad with ratio of inner to outer radius rilro of 0. 3and angular extent B
of 3°.
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Figure 4. - Design charts for flat, sector-shaped pad with ratio of inner to outer radius rilrg of 0.3 and angular extent of
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